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1. Introduction 
 
 A better understanding of the mechanisms governing the plastic properties of 
materials requires the analysis of the dislocations fine structure.  
Important informations can be obtain using experimental methods at a macroscopic 
scale. For example, studying the slip traces at the surface of a deformed sample can 
help identifying the major slip systems activated during the deformation. However, in 
many cases, dislocations properties are directly related to local events occuring on their 
lines, as dissociation modes or interactions with points defects or precipitates. Direct 
observation of dislocations are thus necessary, and are achieved by using Transmission 
Electron Microscopy (TEM). 
 At a microscopic scale, High Resolution Electron Microscopy  (HREM) may 
give precise informations by direct visualization of the distortion of the crystal in the 
close vicinity of the dislocation. However, HREM is not applicable at a mesoscopic 
scale since the dislocation under study must be straight and edge on in a very thin foil to 
be observed. Furthermore, no informations on the components of the displacements 
along the electron beam direction can be obtained from HREM images. On the 
contrary, imaging with conventional microscopy reveals information on the global 
geometry of the dislocations and on their interactions with other defects. Moreover, the 
resolution provided by weak-beam TEM allows for direct identification of dislocations 
as well as observation of dissociated dislocations. 
 The contrast of a dislocation image is a function of several parameters. Some are 
intrinsic to the material (anisotropic elasticity, absorption,...), some are extrinsic 
(imaging conditions, microscope, transfert function of the negative,...). The intrinsic 
parameters directly act on the diffracted amplitude or on the phase of the different 
beams. 
Since the image of a dislocation is the result of the complex propagation of electrons 
through an anisotropic faulted crystal, the prediction of the image is a priori impossible, 
and precise interpretations of dislocations images require simulations. 
 In this course, we will first emphasize the dynamical interaction between the 
electron beams and the crystal (§ 2.3). We will then focus on approximations which are 
used in order to reduce the complexity of the calculations (§ 2.4). The description of the 
displacement field due to a dislocation is of prime importance and a way to calculate it 
in an anisotropic crystal will be described  (§ 2.5). Finally, § 3. will be devoted to some 
real life examples. 
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2. Theory 
 
2.1 ORIGIN OF CONTRAST 
 
In the microscope, the almost parallel beam of electrons formed by the electron gun is 
scattered by the specimen. In the case of crystalline materials, this scattering takes the 
form of several diffracted beams (§ 2.2.2) travelling at small angles (≈ 1 or 2 degrees) 
with the incident beam. 
 
 

 
Figure 1 :   Formation of an image within a Transmission Electron 
Microscope. (a) Scattering of the electron beam by a crystalline 
material ; (b) formation of a "bright field" image ; (c) formation of a 
"dark field" image. The diffraction angles have been exaggerated for the 
drawing.  

 
These beams are focused by the objective lens to form a diffraction pattern in its back 
focal plane (Figure 1.a). The image is produced by selecting one or several beams by 
inserting an aperture in the focal plane of the objective lens. The contrast arises from 
local variarion in the intensities of electrons scattered into Braggs reflections from 
various parts of the thin specimen. When the aperture is inserted exactly on the 
objective lens axis, it does not allow diffraction beams to pass though to the final 
image, which is therefore formed by the direct beam and any low angle inelastic 
scattering (Figure 1.b). This type of image is called bright-field image. Images can also 
be formed by any one of the diffracted beam by either displacing the aperture to receive 
this beam, or by tilting the illumination so that the required beam passes down the axis 
of the objective (Figure 1.c). The resulting image is called a dark-field image. 
 
 
2.2. DIFFRACTION OF ELECTRONS IN A PERFECT CRYSTAL 
 
The exact description of the interaction of an electron beam with a crystal requires the 
use of quantum mechanic formulation and will be reported in § 2.3. In what follows, we 
will concentrate on an approximated way to describe this interaction in order to obtain a 
simple way to understand what is happening in the crystal and what are the 
characteristic of the beams going out of the crystal. 
 
2.2.1 Kinematical Diffraction of Electrons in a Perfect Crystal 
As a first approximation, we assume that the electrons of the incident beam are 
travelling in the same direction. We call l the wave length of the electron beam in 

Objective lens

Sample

Screen

Back focal plane

(a) (b) (c)



393 
H.O.Kirchner et al. (eds.), Computer Simulation in materials Science, 391-406. 
© 1996 Kluwer Academic Pubishers. Printed in the Netherlands 

vacuum oriented along the wave vector k, such that || k || = 1/l.  The amplitude of the 
incident beam A0 is : 
 
 A0 = 1/|| r || exp(2ip k.r)) (1) 
 
where r is a point of the wave front. The amplitude of the beam scattered by one atom, 
say number 1, is 
 A1 = f1(q)A0 (2) 
 
where f1(q) is the scattering factor for this atom. The amplitude of the beam scattered 
by atom j is 
 fj(q)A0 exp (ijj) (3) 
 
where jj, the phase shift between beams scattered by atom 1 and atom j, is : 
 
  (4) 
 
and here the path difference d = l (k - k').ri (Figure 2), where ri describes the position 
of the atom i in the unit cell. 
 

 
Figure 2  

 
The scattered amplitude in the direction k' resulting from the interaction of an electron 
beam k and a unit cell is thus given by : 
 

  (5) 

 
We can write the factor structure F(q) of the unit cell as : 
 
  (6) 

 
the summation being made over the atoms of the unit cell. 
In the same way and leaving out the factor exp(2ipk.r)/r which is the propagation term, 
the scattered amplitude resulting from an assembly of unit cells is given by : 
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  (7) 

 
Now the summation is made over all the unit cells and rn is defined by : 
 
 rn  = n1 a + n2 b + n3 c (8) 
 
where a, b and c are the unit cell translations in the crystal, and n1, n2 and n3 are 
integers.  
 
2.2.2 Conditions for Strong Diffraction in a Crystal 
In terms of reciprocal lattice coordinates, k - k' can be written as : 
 
 k' - k = x1 a* + x2 b* + x3 c* (9) 
 
And f then writes : 

  (10) 

 
Strong diffraction occurs when (n1x1 + n2x2 + n3x3) is an integer for all n1, n2 and n3, 
that is when k - k' coincides with a reciprocal lattice vector : 
 
 k' - k = g = h  a* + k b* + l c* (11) 
 
Note that since ||g|| = 1/dhkl and ||k - k'|| = 2 sin(qB)/l (Figure 3), expression (9) is 
equivalent to the Bragg law : 
 
 l = 2 dhkl sin (qB) (12) 
 
which simply states that the (hkl) plane is in Bragg position. 
 
 

 
Figure 3 

 
We can then derive a simple geometrical construction for determining the conditions of 
reflection : from the origin of the sample, we construct a sphere with radius 1/l, called 
the Ewald sphere (Figure 4). From the intersection of the Ewald sphere with the 
transmitted beam, we construct the reciprocal lattice of the crystal. Each point of the 
reciprocal crystal which intersects the Ewald sphere satisfies the Bragg conditions, and 
a strong Bragg reflection will occur if the diffracted beam is at the intersection of the 
reciprocal crystal with the Ewald sphere. 

   φ = F θ exp – 2iπ k' – k .rnΣn
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In TEM, the crystal is usually in the form of a plate and the intensity distribution in the 
reciprocal lattice as the form of a spike. Thus, reflection takes place not only for an 
exact Bragg reflections, but also over a range of orientations of the crystal 
corresponding to the intersections of the Ewald sphere with the spikes in the reciprocal 
lattice (Figure 4). In any case, the diffracted beam can be written as a function of the 
incident beam k : 
 
 k' = k + g + sg (13) 
 
where g is a vector of the reciprocal lattice and sg is called the deviation from Bragg 
angle. sg is zero for an exact Bragg reflection. 
 

 
 

Figure 4 : Ewald construction 
 
2.3. ELECTRON PROPAGATION IN A DEFORMED CRYSTAL 
 
In what follows, we will use the wave-mechanical formalism. A complete treatment of 
the electron diffraction in imperfect crystals is not within the scope of this paper. The 
theory of electron diffraction summarized here is based on the dynamical theory 
formulated by Howie and Whelan [1] and Takagi [2] and described in great details by 
Hirsch et al. [3]. 
 
The Schrödinger's equation which describes the propagation of an electron subjected to 
a potential difference (or acceleration tension) E through a deformed crystal is : 
 
  (14) 

 
where V'(r) is the potential of the deformed crystal, differing from the potential of the 
undefected crystal V(r) by a small perturbation. Equation (14) has no general solution, 
but in order to solve it, we will consider that the potential V'(r), as V(r), varies 
smoothly within the unit cell. Since the atom at the position ra in the perfect crystal is 
moved by the quantity R(ra), where R(r) represents the deformation of the crystal at 
point r, V'(ra) = V(ra-R(ra)). V'(r) is small in regards to E (typically in the order of 10 
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to 20 V compared with an acceleration tension often larger than 100 kV) and again 
provided that the crystal potential deforms smoothly, it can then be written as a Fourier 
serie over the reciprocal vectors g : 
 

  (15) 

 
A solution for the above Schrödinger's equation has the form : 
 
  (16) 
 
where the magnitude of k', the wave vector of the diffracted beam, is given by the 
conservation of energy : 

  (17) 
 
Substituting (15) and (16) in equation (14), we obtain : 
 

 (18) 

 
where the scattered wave vector has been expressed using expression 13. 
In order for the equations (18) to be satisfied, the terms in the large brackets must be 
zero. Provided that R(r) varies slowly with r and that Ñ2fg(r) is negligible in 
comparison with (k + g + sg).Ñfg(r), equations (18) reduce then to : 
 

  (19) 

 
where hg is the co-ordinate in the direction of the diffracted beam k'. 
Equations (19) can be rewritten using the wave-optical formulation by introducing the 
extinction distance xg. By definition, xg is twice the distance in the crystal that a 
diffracted beam g has to cross in order to build up to unit amplitude. If Vc is the volume 
of the unit cell and Fg its structure factor (expression 6), it can be shown that : 

  (20) 

Alternatively, xg writes : 

  (21) 
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since, for electrons in the crystal, Bragg angles qB are small (of the order of 10-2 rad). 
It follows that : 

  (22) 

and equations (18) transform into the equivalent form : 
 

  (23) 

 
Of course, the observed intensity of the beam is :  I = fg fg*  
 Notice finally that, while electrons do not disappear in the crystal, some of them 
undergo large angle, eventually inelasic, scattering. This can be taken into account in 
equations (23) by replacing 1/xg by 1/xg + i/xg'  , where xg,'  are phenomenological 
parameters and the ratios xg/xg,'  are called anomalous absorption parameters. 
 
 
2.4 APPLICATIONS OF THE DIFFRACTION THEORY TO ELECTRON 
MICROSCOPY 
 
In order to calculate the scatterred beams fg, equations (23) have to be integrated for 
every beams as a function of hg, that is along the directions k + g + sg. This implies 
taking into account of derivative of fg as a function of x, y and z. Such an integration is 
usually intractable by analytical techniques and requires to be numerically computed. 
However, the level of complexity is such that, for the time being, there is no program 
available containing no further approximations than the ones described above. 
Two approximations are commonly used : (i) directions k and k' are nearly parallel, and 
integration is approximated along the diffracted beam k', that is along the z axis ; (ii) 
very often only two beams play a significant role in the formation of the image : the 
transmitted beam and a diffracted beam, and the effect of the other beams is neglected. 
 
2.4.1 Column Approximation 
At the bottom surface of the sample, the contribution of the electrons to the intensity on 
a point in the exit surface of the sample is coming at most from an area which is at the 
base of a cone (figure 5). 

  
     Figure 5 
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The size of the contributing area on the top surface of the sample is a function of qB 
and of the thickness t of the foil, and is approximately 2 t qB. At maximum, qB is in the 
order of 10-2 rad. The beams contributing to the image are thus coming from an area at 
most 2 nm in diameter for a foil thickness of 100 nm. It follows that, provided that R 
does not vary rapidly, the terms in ¶/¶x and ¶/¶y in equations (23) may be ignored. In 
the column approximation, the beams are thus considered as parallel within a narrow 
cylinder parallel to the diffracted beam. In this approximation sg is parallel to the 
diffracted beam k' and is refered as s or sz, the positive being in the z direction. 
Notice that beams with Bragg angles larger than 2 degrees have extinction distances 
usually very large, which in regard to equation (23) indicate that they should contribute 
very little. However, equation (23) also show that not only beams with small extinction 
distances but beams with small deviation from Bragg angle contribute strongly to the 
image too. Thus, the column approximation will be suitable provided that no small 
beam other than g is strongly excited. 
 
2.4.2 Many-Beams Calculation in the Column Approximation 
Within the framework of column approximation, equations (23) can be written in a 
matrix form : 
  (24) 

where (r) is the vector  

  (25) 

 
Equations (24) describe the interaction of (n+1) beams (transmitted beam is beam 0) 
contributing to the image. Using the wave-optical formulation, the symmetrical matrix 
M writes : 

  (26) 

 

when p ≠ q : , giving   

and  which reduces to  for q = 0. 
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2.4.3 Two Beams Calculations 
By forming an image of the back focal plane of the objective lens with the microscope, 
it is possible to directly determine which beams are excited since they will appear as 
strong spots in the diffraction pattern (§ 2.2). It is possible to tilt the sample in such a 
way that only one row of the reciprocal lattice parallel to beam g is in or near Bragg 
conditions. Head et al. [4] have shown that more than 80% of the total intensity is 
contained within the transmitted beam and the diffracted beam g. Assuming that these 
two beams only contribute significantly to the image, the equations (23) simplify to a 
set of two coupled differential equations : 
 

  (27) 

 
where z is the co-ordinate in the direction of the transmitted beam and xg the 
component of hg perpendicularly to the transmitted beam. In the wave-optical 
formulation, these equations can be written using the phenomenological complex values 
xg and x'g : 
 

  (28) 

 
It is worth emphasizing that these equations show that the contrast is in fact a function 
of the derivative of the product g.R, rather than R. 
 
2.4.4 Two Beams in Column Approximation 
When only two beams are taken into account within the column approximation, 
equations (28) simply reduce to 
 

  (29) 

 
which are the equations used in programs "ONEDIS" and "TWODIS" by Head et al [4]. 
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2.4.5 Kinematical Approximation 
Finally, assuming that the two beams and column approximations are operative, the last 
step of simplification is to consider that the diffracted beam is weak compared to the 
transmitted beam, the latter being now taken as constant. In such a case, the amplitude 
of the diffracted beam can be written as : 
 

  (30) 

 
where t is the thickness of the foil. This equation is often used in order to obtain a first 
and quick idea of what you should obtain (see § 3.1). 
 
 
2.5 DISPLACEMENT FIELD AROUND A DISLOCATION 
 
The fact that calculation of the image requires the displacement field due to a 
dislocation to be known precisely in a continuous way and over a large scale has been 
hidden above. This displacement field can be attained by different methods, from 
isotropic elasticity to atomistic simulations. However, atomistic simulations which 
often require long calculation time for a limited area under study, are for the time being 
inappropriate and in what follows, we will use linear elasticity. 
Crystals are often anisotropic. Since anisotropy can modify the image of a dislocation 
in a very strong way (see § 3.1), anisotropic elasticity must be used in order to compare 
direct observations of dislocations and simulated images. Notice, however, that the 
exact displacement in a thin foil is intractable if account is taken of anisotropic 
elasticity and the effects of surfaces. The latter is not included in this paper. 
In what follows, we will use Stroh's formalism [5] with Head et al. notations [4]. 
 
2.5.1 Anisotropic Elasticity 
The stresses sij are related to the elastic displacements Rk by the equations : 
 

  (31) 

 
where i, j, k and l can take the values 1, 2 or 3. On substituting the values of s in the 
equilibrium equations in the absence of external forces, 
 

   or    (32) 

we found : 

  (33) 

For an infinite defect along the x3 axis (Figure 6), solutions of the above equations, 
independent of x3, have the form : 
 Rk = Ak f(x1 + p x2) (34) 

Φg  = iπ
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provided that the constant vector Ak satisfies : 
 

  (35) 

 
Figure 6 : Coordinate system used for the calculation of displacement 
field R. The dislocation line is parallel to the x3-axis which points 
towards the figure. The angle f is in the plane normal to the dislocation 
line and is measured from the slip plane. 

 
Values not identically zero of the vector Ak can be found if the determinant associated 
to the set of equations (35) is zero, that is, if p is a root of the sextic equation : 
 

  (36) 

 
From energy arguments, it can be shown that the roots of equation (36) occur in 
complex conjuguate pairs pa (a = 1, 2 or 3), and a general expression of the 
displacements is : 
 
  + complex conjugate (37) 

 
2.5.2 Case of a Dislocation 
Consider now the displacements with the following form : 
 

 + c.c. (38) 

 
where the Da are constant. Along a closed path encircling x3, Rk changes by an 
amount : 
 
 + c.c. (39) 

and the resultant force acting across a closed path encircling x3 is : 
 

  ci1k1 + p ci1k2 +p ci2kl + p2 ci2k2 . Ak = 0Σ
i

φ

r

x1

x2

 ci1k1 + p ci1k2 +p ci2k1 + p2 ci2k2 = 0

  Rk = Akα fα x1 + pαx2Σ
α

  Rk = 1
2iπ AkαDα Ln x1 + pα x2Σ

α

  bk = AkαDαΣ
α



402 
H.O.Kirchner et al. (eds.), Computer Simulation in materials Science, 391-406. 
© 1996 Kluwer Academic Pubishers. Printed in the Netherlands 

  + c.c. (40) 

where the three vectors Lia are defined by : 
 
  (41) 

 
Equations (38) will then represent the displacements due to an infinite dislocation along 
x3, provided that bk is the Burgers vector of the dislocation (equation 39), and provided 
that there is no net force along its axis, that is : 
 
 Fi = 0 or  (42) 

 
It follows that the displacement field R can be determined as follows : 
- first find the roots pa from equation (36), and thus the vectors Ak 
- then determine the three complex constants Da from equations (39) and (42) 
Notice that since expression (36) is a sextic equation, there is no general analytical form 
for its solutions. Equation (36) has to be solved numerically, except in some special 
cases, extensively described by Steeds [6]. Head et al. [4] have developped a procedure 
called ANCALC which automatically calculate the values Ak, Da et pa. 
 
 
3. Exemples of the Use of Simulations 
 
3.1. INFLUENCE OF ANISOTROPIC ELASTICITY IN THE EXTINCTION 
CONDITIONS 
 
In isotropic elasticity, the displacement R = (R1, R2, R3) near a dislocation at a point (r, 
f) (Figure 6) is : 
 
  (43) 

 
where be is the edge component of the Burgers vector b, and u its line. This simply 
reduces to 
 
  (44) 

 
for a pure screw dislocation (b//u). Thus, in isotropic crystals and under the kinematical 
approximation (equation 30), a screw dislocation is out of contrast when g.b = 0, since 
in that case, there is no difference between the beam diffracted by a perfect and a 
faulted crystal. This holds true for dislocations containing an edge character, provided 
that the quantity g.(b´u) is small enough. The corresponding "g.b = 0 invisibility 
criterion" provides a quick and simple way to determine the direction of b that consists 
in searching two independent reflections under which the defect is invisible. 
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In anisotropic crystals observed under dynamical conditions, the g.b = 0 invisibility 
criterion is however often unapplicable. This is examplified in figure 7.a which shows 
that in b-CuZn, a screw dislocation with a Burgers vector b = [111], imaged with 
g = 1,

_
1,

_
 2, still exhibits a significant contrast in condition g.b = 0. 

However, simulations show that imaging with an large deviation sg from Bragg  angle 
(the "weak beam" technique) extends the applicability of the g.b = 0 invisibility 
criterion since, provided the Bragg deviation is large enough, the g.b = 0 holds true 
(figures 7.b, c and d). 
 

 
Figure 7 : Simulated images of a [111] screw dislocation under g.b = 0 
condition. (g = 1,

_
1,

_
 2) (a) bright field image under Bragg condition (sg = 0) ; 

(b) dark field (DF) image, sg = 0.2 nm-1 ; (c) DF, sg = 0.3 nm-1 ; (d) DF, sg = 
0.4 nm-1. The grey scale is identical for every dark field pictures (i.e. the 
exposure time is constant). The simulations have been performed using the 
"Cufour" program, a many-beams program with column approximation by 
Schaüblin and Stadelmann [7]. 

 
 

3.2 ARTEFACT DUE TO MANY-BEAMS INTERACTION 
 
Double contrast of superpartials with Burgers vector 1/2[110] has been repeatedly 
reported in condition g.b = 2 in several intermetallics with L12 structure. This double 
contrast has been interpreted as a proof of dissociation of these dislocations, leading to 
different modelizations of slip glide processes. Numeric simulations of dislocation 
images have shown that the double contrast is an artefact arising for a small and well-
defined Bragg deviation range (Figure 8). The doubling of the contrast occurs around 
the g-3g conditions (when the image is done with beam g while beam 3g is excited), 
and is absent when calculations are made using only two beams. This latter point 
indicates that the artefact is related to a double diffraction at the core of the dislocation 
resulting from a intensity transfert from beam g or -g to 2g. 
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Figure 8. Simulated profils of a pair of screw superpartials 1/2[110] in Co3Ti. 
Fine lines correspond to two-beams simulations and thick lines correspond to 
simulations with four beams (-g, transmitted beam, +g and 2g) (x-axis in xg 
unit). The images have been performed for the g = 220 beam while the ng beam 
is excited. The simulations have been calculated using a many-beams program 
without column approximation developped by C.J. Humphreys and modified in 
order to take into account of the anisotropy of the crystal (Oliver [8]).  
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3.3. DETERMINATION OF THE NATURE OF A STACKING FAULT IN Ni3Al 
 
Observations of dipoles of dislocations with a Burgers vector 1/3<112> is a common 
feature in deformed Ni3Al. These dipoles are faulted, and in order to determine the 
exact process of formation of these dipoles, it is of prime importance to know the fault 
vector of the defect. 
Two cases are possible as a Superlattice Intrinsic Stacking Fault (SISF) or a 
Superlattice Extrinsic Stacking Fault (SESF) can be formed in the {111} plane of the 
dipole. Simulations for different diffraction conditions (for different g) are in 
accordance with observations of  SISF rather than SESF (Figure 9). 
 

 
Figure 9 Comparisons of experimental and simulated images ; (a)  
Experimental dark field image with g = 1,

_
1,

_
 1 (b) simulated image with 

SISF ; (c) with SESF. (d) Experimental dark field image with 
g = 11,

_
1,

_
 (e)  simulated image with SISF ; (f) with SESF. The 

simulations have been performed using the program TWODIS, a two-
beams program with column approximation (Head et al., [4]) 
(Experimental images, courtesy of P. Veyssière). 
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