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Abstract Linear anisotropic elasticity has been applied
to interpret the dislocation stability and ease of slip in
wadsleyite. It is shown that wadsleyite is very isotropic
from the elastic point of view. The influence of crystal
chemistry and bonding on the choice of the slip plane is
discussed. It is shown that slip is predominantly
achieved on planes that do not shear Si–O bonds. It is
suggested that dissociation of dislocations is essential in
determining the ease of slip among the various slip
systems.

Keywords Linear anisotropic elasticity Æ Dislocation
stability Æ Slip planes

Introduction

It is now possible to investigate the physical properties
of minerals at pressures and temperatures of the deep
Earth. In particular, and despite serious present-day
limitations, we are now able to induce plastic deforma-
tion in minerals at P, T conditions relevant for the
Earth’s transition zone. Parts I and II of the present
study describe plastic deformation experiments in shear
and compression geometry performed on wadsleyite.
Subsequent investigation of the dislocation microstruc-
tures by transmission electron microscopy (TEM) using
large-angle convergent beam microscopy (LACBED)

has yielded much information on the various disloca-
tions which can glide in the wadsleyite structure, on their
slip planes, on their possible dissociations, etc. Several
slip systems have been identified:

½100�ð010Þ
½100�ð001Þ
½100�f011g
½100�f021g
1=2h111if101g
½010�ð001Þ
½010�f101g
h101ið010Þ ;
although only those involving 1/2h111i and [100] dis-
location appear to be easily activated at high tempera-
ture (Part II).

In the present study, we first examine the elastic
properties of wadsleyite. Then, we examine the influence
of crystal chemistry on the choice of the slip plane.
Finally, anisotropic elasticity is applied to calculate the
non-core, elastic energy of dislocations in wadsleyite.
The possible influence of dissociation on the choice of
the slip systems is also discussed.

Elasticity

Before considering the plastic behaviour, it might be in-
teresting to discuss the elastic properties of wadsleyite.
Seismic data being one of the richest sources of infor-
mation on the structure of the mantle, it early appeared
important to determine the elastic properties of mantle
minerals at both high P and high T. Important work has
been accomplished in this direction in recent years from
the experimental side (Liebermann and Li 1998; Lieber-
mann 2000) as well as from the theoretical side (Sixtrude
2000). Several studies have established the evolution of
the shear modulus and bulk modulus of wadsleyite with
pressure (Sawamoto et al. 1984; Gwamnesia et al. 1990;
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Li et al. 1996; Li et al. 1998, Sinogeikin et al. 1998; Zha
et al. 1998; Li and Liebermann 2000). The influence of
temperature at pressures up to 7 GPa has been addressed
recently by Li et al. (1998). Measurements performed on
single crystals allow determination of the nine indepen-
dent coefficient of the matrix which, in Voigt notation,
describe the fourth-rank tensor of elastic constants
(Sawamoto et al. 1984; Sinogeikin et al. 1998; Zha et al.
1998). The results of Zha et al. (1998), which extend to ca
14 GPa, have been used in the following of this study.
They are presented in Table 1.

In a crystal which is potentially anisotropic, the shear
modulus, which describes the resistance of the structure
to shear, has to be defined in a given plane and along a
given direction. We have used anisotropic elasticity to
calculate the shear modulii corresponding to the various
slip systems observed in wadsleyite. It is possible for a
given shear direction such as [100] to calculate the shear
modulus in any plane (0kl) containing the shear direction.
The details of the calculation are given in Appendix 1.
The evolution of the shear modulus l[100](0kl) with
the orientation of the shear plane is presented Fig. 1 at
two different pressures. The result of a similar calculation
for shear along [010] is given Fig. 2. It shows that for a
given shear direction, the choice of the glide plane
is probably not governed by elasticity, as the elastic

properties do not vary much with the orientation of the
plane. We have plotted in Fig. 3 the evolution with
pressure of the shear modulii corresponding to various
slip systems. Except for l[100](001), which has a small
dependence with pressure, the other shear moduli have a
very similar evolution. They increase by about 20%
when pressure is raised from room pressure to 14 GPa.
The different slip systems face very comparable shear
moduli and their differences even decrease with increas-
ing pressure. The choice of the easy slip systems is then
unlikely to result from elasticity only, as wadsleyite
appears to have a very isotropic behaviour from the
elastic point of view.

Slip planes

In metals, the glide planes are usually selected among the
close-packed planes. In the case of oxides, one usually
looks for close-packing within the oxygen sublattice.
This approach has been followed by Dupas et al. (1994),
who noted that the oxygen sublattice of wadsleyite is
face-centred cubic. Their observation that slip does take
place in the f021g and f101g planes (which belong to
close-packed planes of the anionic sublattice) was in-
terpreted accordingly. In the case of silicates, one must

Fig. 1 Shear modulus along [100] in a plane (0kl). Theta is the angle
between (0kl) and (001). The shear modulii are calculated at two
pressures 0 and 14.2 GPa by using the elastic data of Zha et al. (1998)
presented in Table 1

Fig. 2 Shear modulus along [010] in a plane (0kl). Theta is the angle
between (h0l) and (001). The shear modulii are calculated at two
pressures 0 and 14.2 GPa by using the elastic data of Zha et al. (1998)
presented in Table 1

Table 1 Elastic moduli of wadsleyite as a function of pressure from Zha et al. (1998)

P (GPa) C11 (GPa) C22 (GPa) C33 (GPa) C44 (GPa) C55 (GPa) C66 (GPa) C12 (GPa) C13 (GPa) C23 (GPa)

0 370.5 367.5 272.5 111 122 103 65 95 105
3.1 379 382 292 111 122.5 100.5 85.5 105.5 112.5
6.3 393.5 400 317 126.5 117.5 117 84 118 119
8.1 404 418.5 324 121.5 123.5 118.5 94.5 122.5 123.5
9.4 414.5 440 333 127 123 118.5 104 124 132
10.1 429 416 334 117.5 128 121 104.5 130 111
10.5 422 425.5 331 121.5 127 116 108 128 125.5
14.2 444.5 465 387 131 121.5 130 124 142 152

272



take into account the nature of the bonds that the dis-
location has to break in its glide motion. Indeed,
wadsleyite is built up with two distinct structural units:
MgO6 octahedra and Si2O7 units constituted of two
linked SiO4 tetrahedra. The Si–O bonds, which are the
shorter, are the strongest bonds of the structure.
Figure 4 presents the unit cell of wadsleyite viewed along
[100] and [010]. One can see that (010), (001), f101g and
f011g, which have been identified as glide planes in our
study, are planes which allow shear without cutting the

strong Si–O bonds. It is only in the case of f021g that
shear is likely to be accompanied by the breaking of
Si–O bonds.

Dislocation and slip systems

In this section, we examine the energetics of dislocations
in wadsleyite. The energy of a dislocation is made of two
contributions. One is due to the breaking and distortion
of the bonds in the dislocation core, and can be deter-
mined through atomistic calculations. The second is the
elastic energy stored in the crystal. We will consider this
latter term only, which can be calculated using aniso-
tropic elasticity. In a crystal, the elastic energy of a
straight dislocation per unit length is given by:

E ¼ K
b2

4p
Ln

R
r0

� �

where b is the magnitude of the Burgers vector, R is
the radius of the dislocation strain field, r0 is the dis-
location core radius and K is a factor which is a
function of the elastic constants of the crystal and of
the character of the dislocation line. In this study, the
energy term E has been calculated with the help of
DISDI, a program based on Stroh’s (1958) formalism,
using the ANCALC subroutine originally designed by
Head et al. (1973) and subsequently modified to in-
clude any crystal structure and dissociated dislocations.
In every case, R has been taken equal to 100 nm. The
actual value of r0 is unknown. Without these data, we
have, for the sake of simplicity, used a constant value
of 0.3 nm for every dislocation. An alternative option
could have been to use a value of r0 proportional to
the modulus of the Burgers vector. We have checked
that this option would not have qualitatively changed
the results obtained.

[100] slip

Dislocations with [100] Burgers vector have been ob-
served and characterized in every sample. They are
usually straight with a marked screw character. [100] slip
represents clearly a major deformation mode. Moreover,
the shear experiments suggest that [100] slip is easy at
high temperature. The slip system [100]f021g had al-
ready been reported by Dupas et al. (1994) while Sharp
et al. (1994) observed [100] dislocations gliding in (010)
in a San Carlos olivine deformed at 14 GPa and
1450 �C. In our study, [100] dislocations have been
found to glide in (001), (010), f011g and f021g. The
elastic energy per unit length of [100] dislocations lying
in these planes has been calculated with DISDI as a
function of the dislocation character. The results are
presented in Fig. 5. One can see that, in agreement with
the conclusion of the previous section on the weak an-
isotropic character of wadsleyite, the energy difference is
small between the different slip planes. One can see also

Fig. 4 Unit cell of wadsleyite viewed along [100] (a) and [010] (b).
Only the SiO4 tetrahedra are represented. The slip planes character-
ized in wadsleyite are shown

Fig. 3 Evolution with pressure of the shear moduli corresponding to
the main slip system characterized in wadsleyite. The elastic data are
taken from Zha et al. (1998)
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that the elastic energy of a dislocation is significantly
lower for screw (h ¼ 0 or 180�) than for edge orientation
(h ¼ 90�), as expected in an almost isotropic material for
which the ratio (elastic energyedge)/(elastic energyscrew) is
close to 1.5. However, this difference alone is unlikely to
account for the marked screw character observed ex-
perimentally, which probably reflects some favourable
core structure. In one case only have we observed dis-
sociated [100] dislocations. These were dissociated in
their glide plane: f021g and the partial separation was of
the order of 15 nm. Although the Burgers vector of the
partial dislocations has not been fully characterized, the
contrast observed suggests the simple reaction: [100] fi
1/2[100] + 1/2[100]. This scenario is also supported by
the crystal structure which shows (Fig. 6) that 1/2[100] is
a perfect lattice repeat of the oxygen sublattice. It is then
possible from the knowledge of the partial separation to
evaluate the stacking fault energy. This calculation has
been done using DISDI, which yields a stacking fault
energy of the order of 110 mJ m)2. The total energy of

this dissociated configuration has been calculated and
plotted in Fig. 5. Dissociation induces a significant en-
ergy reduction, which might explain that slip is activated
in f021g, although Si–O bond breaking is required.

1/2h111i slip

As [100] slip, 1/2h111i slip in {101} seems to play an
important role in the plastic deformation of wadsleyite.
1/2h111i dislocations have been observed in image mode
and characterized by LACBED in every sample, what-
ever their deformation mode. 1/2h111i {101} is one of
the slip systems activated in shear deformation experi-
ments which are thought to be easily activated at high
temperature (1300 �C). This was expected, as 1/2h111i is
one of the shortest lattice repeats and as {101} is a close-
packed plane of the anionic sublattice. This slip system
has already been reported by Dupas et al. (1994). The
energy of a 1/2h111i dislocation line is plotted in Fig. 7
as a function of the line character. It is almost twice the
energy of a [100] dislocation. However, 1/2h111i dis-
locations have often been observed to be dissociated in
two partials. Such an observation has already been re-
ported in Dupas et al. (1994). Once again, the Burgers
vector of the partials has not been unambiguously
characterized; however, the two partials have a similar
contrast, and they are in contrast with 400, 080, 004 and
303 diffraction vectors. This leads us to propose the
simple dissociation reaction:

1=2½111� ! 1=4½111� þ 1=4½111� :
The width of the faulted ribbon between the partials has
been observed to range between 15 and 35 nm. This cor-
responds to a maximum stacking fault energy of
210 mJ m)2. The line energy of the dissociated dislocation

Fig. 6 Layer (4 Å thick) of wadsleyite parallel to (021). It is shown
that 1/2[100] is approximately a repeat of the oxygen sublattice

Fig. 7 Elastic energy per unit length of 1/2h111i dislocations lying in
{101} calculated with DISDI (solid diamonds). Theta represents the
dislocation character (theta = 90� for the edge dislocation and theta
= 0� or 180� for the screw dislocation). The open squares represent the
elastic energy per unit length of 1/2h111i dislocations dissociated in
{101} into two 1/4h111i partial dislocations separated by a stacking
fault with an energy of 210 mJ m)2

Fig. 5 Elastic energy per unit length of [100] dislocations lying in
various planes (solid symbols): (001), (010), (011) and (021) (calculated
with DISDI). Theta is the angle between the dislocation line and the
Burgers vector. It represents the dislocation character (theta = 90� for
the edge dislocation and theta = 0� or 180� for the screw dislocation).
The open circles represent the elastic energy per unit length of [100]
dislocations dissociated in (021) into two 1/2[100] partial dislocations
separated by a stacking fault with an energy of 110 mJ m)2
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is plotted in Fig. 7, and is close to the energy values of
[100] dislocations.

[010] slip

Except for one sample (H1433 see Part I), [010] dis-
locations have been observed in every sample deformed
in compression. These dislocations are found to glide in
(001) and {101}. The occurrence of dislocations with
such a large Burgers vector (11.45 Å) is surprising, be-
cause it leads to a very high elastic energy (Fig. 8). We
have analyzed the stability of [010] dislocations with
respect to dislocations with smaller Burgers vectors.
Figure 9 shows the possible decomposition of a [010]
dislocation into two 1/2h111i dislocations in a {101}
plane. The stability of a dislocation is usually given by
the Frank criterion, which compares the relative energies

of the original dislocation with that of the decomposi-
tion products. This can be done in more detail by cal-
culating the line energies of the two configurations.
Figure 10 presents the result of such a calculation. One
can see that [010] dislocations are unstable. The energy
difference is, however, minimum for the [010] screw or-
ientation, which is the one for which the decomposition
is geometrically possible. It should be noted that evi-
dence of screw [010] dislocations exhibiting a double
contrast compatible with this decomposition has been
observed in several cases. In some other cases, the [010]
dislocation lines are split into four lines with similar
contrasts. These partial dislocations are in contrast with
g = 080 and out of contrast with g = 400. We suggest
that this dissociation might follow the simple scheme:

½010� ! 1=4½010� þ 1=4½010� þ 1=4½010� þ 1=4½010� :
Indeed, it is shown in Fig. 11 that 1/4[010] is a repeat of
the oxygen sublattice in (001). 1/4[010] shear introduces

Fig. 8 Elastic energy per unit length of [010] dislocations lying in (101)
and (001) calculated with DISDI (solid symbols). Theta represents
the dislocation character (theta = 90� for the edge dislocation and
theta = 0� or 180� for the screw dislocation). The open squares
represent the elastic energy per unit length of a [010] dislocation
dissociated in (001) into four 1/4[010] partial dislocations as calculated
in Appendix 2

Fig. 9 Unit cell of wadsleyite viewed along the plane (101). Only the
SiO4 tetrahedra are represented. The decomposition of [010] in two
1/2h111i vectors is shown

Fig. 10 Stability of [010] dislocations. Comparison of the elastic
energy per unit length of a [010] dislocation lying in (-101) with the
one of two 1/2h111i dislocations lying in the same plane (calculated
with DISDI). Theta represents the angle between the line directions
and [010]; this corresponds to the dislocation character for the [010]
dislocation only

Fig. 11 Unit cell of wadsleyite viewed along [001]. No polyhedra are
represented. It is shown that 1/4[010] is approximately a repeat of the
oxygen sublattice
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a cationic disorder only, with a stacking fault energy
which is probably low. This might explain the relatively
large partial dislocations separation observed. We have
calculated the energy of a dislocation [010] dissociated
into four partial dislocations 1/4[010] in the (001) plane.
The details of the calculation are presented in Appendix
2. The total width of the dissociation is 200 nm as in
Fig. 9 of Part I. This yields to stacking fault energies
that are of the order of 40 to 60 mJ m)2. It is shown in
Fig. 8 that the energy reduction associated with this
dissociation exceeds 50%. It must be remembered at this
point that we have considered glide dissociation only.
Some climb dissociation has also been observed that
results from annealing and relaxation of the micro-
structure, but which is not discussed here.

h101i slip

h101i dislocations have only rarely been identified in
image mode although their occurrence is demonstrated
unambiguously by 13 LACBED characterizations. The
magnitude of the h101i Burgers vector implies a high
dislocation line energy, as shown in Fig. 12. However,
energy calculations show that h101i dislocations are
stable with respect to the Frank criterion (compared to
1/2h111i dislocations, for instance). In several cases,
however, we have observed partial dislocations with
Burgers vectors compatible with 1/2h101i (they have not
been fully characterized by LACBED) gliding in (010).
These partial dislocations might result from the dis-
sociation reaction:

h101i ! 1=2 h101i þ 1=2 h101i :

We tried to estimate the energy associated with this
dissociated configuration. Such a calculation requires
the input of the stacking fault energy. In the previous
cases, these data were deduced from the equilibrium
width of the dissociated dislocation. In the present case,
the faulted ribbons are extended and do not exhibit any
equilibrium width. This probably reflects a low stacking
fault energy. Indeed, a 1/2h101i (010) fault probably has
the same structure as the faults observed in many wad-
sleyite samples (Madon and Poirier 1983; Price 1983;
Dupas et al. 1994; Sharp et al. 1994; Mosenfelder et al.
2000), natural or not, and identified by Madon and
Poirier as a thin (one or two atomic layer) layer with the
ringwoodite structure. As a theoretical experiment, we
have plotted in Fig. 12 the range of dislocation line en-
ergies of h101i dislocations dissociated into two
1/2h101i partial dislocations separated by a stacking
fault with an energy of between 0 and 200 mJ m)2. The
microstructures observed at the TEM can be alter-
natively interpreted as resulting from the direct nuclea-
tion of partial 1/2h101i dislocation loops. The line
energy associated with a single 1/2h101i is also presented
in Fig. 12. The values presented should be regarded as a
lower limit, as the stacking fault energy (presumed to be
small, but unknown) has not been taken into account.

[001] slip

The case of [001] slip is less straightforward. [001] dis-
locations have been detected only rarely and their oc-
currences have been interpreted as resulting from
dislocation reactions. It seems thus that [001] slip is not
activated. We have calculated the line energy associated
with [001] slip in a number of planes containing the [001]
direction (Fig. 13). As always, the elastic anisotropy
appears to be weak, and the hypothesis made on the slip

Fig. 12 Elastic energy per unit length of h101i dislocations lying in
(010) calculated with DISDI. Theta represents the dislocation
character (theta = 90� for the edge dislocation and theta = 0� or
180� for the screw dislocation). The solid squares represent the elastic
energy per unit length of perfect dislocations. Dissociation into two
1/2h101i partials is plotted for stacking fault energies in the range
0–200 mJ m)2. The energy of a single 1/2h101i partial dislocation is
also represented (open squares), the stacking fault energy is not
considered in this case

Fig. 13 Elastic energy per unit length of [001] dislocations lying in
various (hk0) planes (open symbols) calculated with DISDI. Theta is
the dislocation character (theta = 90� for the edge dislocation and
theta = 0� or 180� for the screw dislocation) in any case. The elastic
energies per unit length of the other slip systems (perfect dislocations)
are plotted on the same graph for comparison
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plane is not important. One can see in Fig. 13 that, from
the energetic point of view, [001] slip is more favourable
than h101i and [010] slip, and very close to
1/2h111i slip! To overcome this apparent paradox, it
should be remembered that much evidence for disloca-
tion dissociations has been observed. The previous sec-
tions have shown that a significant reduction in the line
energy often results from the dissociation. To illustrate
this point, Fig. 14 compares the line energy of [001]
dislocations with those of other dislocations but, con-
trary to Fig. 13, and as a theoretical experiment, we
have systematically taken into account the dissociated
configurations. In the case of h101i slip, we have even
plotted the single 1/2h101i partial. In this case, the en-
ergy associated with [001] dislocations appears sig-
nificantly larger than that of other dislocations. A
tentative conclusion of this analysis could be that, for
some unknown reason, [001] dislocations have no fa-
vourable possibility of dissociation which prevents [001]
slip from being activated.

Conclusion

The slip systems activated in wadsleyite during high-
pressure deformation experiments are discussed based
on crystal chemistry and anisotropic linear elasticity. It
is shown that:

– wadsleyite is very isotropic from the elastic point of
view;

– the slip planes are usually chosen among planes that
do not need to break the strong Si–O bonds

– dissociation of dislocations significantly decreases the
energy of dislocations; it is necessary to take dis-
sociation into account to explain the relative ease of
slip of the various slip systems.

We are aware that in this study a number of inter-
pretations on the precise nature of the dissociation and
core structure of dislocations are speculative, although
based on a reasonable basis. These speculations were
useful to point out the importance of dissociation on the
plasticity of wadsleyite. It seems necessary, however, to
carry out further detailed investigation on the precise
core structure of the dislocations in wadsleyite to better
understand and model the plastic behaviour of this
mineral.
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Appendix 1: Calculation of the shear modulus l[100](okl)

The crystal is referred to a crystallographic basis (1, 2, 3)
built on the unit cell. It is stressed (r) along [100] in a
plane (0kl) which makes an angle a with (001). A new
reference basis is built on the following vectors: 1’, the
stress direction, is parallel to 1. 3¢ is the normal of the
shear plane. 2¢ is chosen for (1¢, 2¢, 3¢) to be right-handed
(Fig. 15).

In (1¢, 2¢, 3¢), the stress tensor has the simple form:

��r0r0�r0r0 ¼
0 0 r
0 0 0
r 0 0

0
@

1
A

It is possible to obtain the strain tensor by applying

Hooke’s law ��rr�rr ¼ ���CC�CC��CC�CC � ��ee�ee However, the elastic constant
tensor is given in (1, 2, 3) only. It is thus necessary to
express the stress tensor in (1, 2, 3). The components in
the new basis are given by: rij ¼ hiji0ihjjj0iri0j0 which
yields:

��rr�rr ¼
0 r sin a r cos a

r sin a 0 0
r cos a 0 0

0
@

1
A ;

Fig. 15 Respective orientations of the reference basis (1, 2, 3) and (1¢,
2¢, 3¢)

Fig. 14 Elastic energy per unit length of [001] dislocations lying in
various (hk0) planes (open symbols) compared with the elastic energy
per unit length of the other slip systems when dissociated dislocations
are considered (calculated with DISDI). Theta is the dislocation
character (theta = 90� for the edge dislocation and theta = 0� or 180�
for the screw dislocation) in any case
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which in the matrix notation of Voigt is written as:

½r� ¼

0
0
0
0

r cos a
r sin a

2
6666664

3
7777775
:

It is then possible to obtain the strains from Hooke’s
law:

0
0
0
0

r cos a
r sin a

2
6666664

3
7777775
¼

C11 C12 C13 0 0 0
C21 C22 C23 0 0 0
C31 C32 C33 0 0 0
0 0 0 C44 0 0
0 0 0 0 C55 0
0 0 0 0 0 C66

2
6666664

3
7777775

e1
e2
e3
e4
e5
e6

2
6666664

3
7777775
;

which yields:

e12 ¼
r sin a
2C66

and e13 ¼
r cos a
2C55

;

and e1030 ¼ e12 sin aþ e13 cos a.
Hence:

l½100�ð0klÞ ¼
1

sin2 a
C66
þ cos2 a

C55

� �

Appendix 2: Line energy of a [010] dislocation
dissociated in four 1/4[010] partial dislocations

Let us consider the dissociation reaction proposed pre-
viously, (Fig. 16):

½010� ! 1=4½010� þ 1=4½010� þ 1=4½010� þ 1=4½010�
The energy of the dissociated configuration is the sum of
the self-energies of the partial dislocations plus their
interaction elastic energies, plus the stacking fault ener-
gies:

ET ¼ REself þ REint þ REfault :

The interaction energy is written as:

REint ¼ K12 � Ln
d1
R
þ K13 � Ln

d1 þ d2
R

þ K14 � Ln
d1 þ d2 þ d3

R
þ K23 � Ln

d2
R

þ K24 � Ln
d2 þ d3

R
þ K34 � Ln

d3
R

:

In the present case, the partial dislocations are parallel
and supposed to be identical, so:

K12 ¼ K13 ¼ K14 ¼ K23 ¼ K24 ¼ K34 ¼ Kint :

Kint is a pair interaction coefficient which is a function of
the orientation of the line. It can be calculated with
DISDI for the interaction of two 1/4[010] partial dislo-
cations lying in (001). The result of the calculation is
shown in Fig. 17. The contribution of the stacking fault
ribbons to the total energy is:

REfault ¼ c1 � d1 þ c2 � d2 þ c3 � d3 :

The equilibrium configuration is reached when the en-
ergy is minimized:

@ET

@d1
¼ @ET

@d2
¼ @ET

@d3
¼ 0 ;

which yields the three following equations:

Kint

d1
þ Kint

d1 þ d2
þ Kint

d1 þ d2 þ d3
þ c1 ¼ 0

Kint

d1 þ d2
þ Kint

d1 þ d2 þ d3
þ Kint

d2
þ Kint

d2 þ d3
þ c2 ¼ 0

Kint

d1 þ d2 þ d3
þ Kint

d2 þ d3
þ Kint

d3
þ c3 ¼ 0 :

The spacings di between the partial dislocations are
measured on the micrographs, one obtains for the screw
orientation:

d1 ¼ 90 nm; d2 ¼ 65 nm; d3 ¼ 45 nm ;

which yields to the stacking fault energy values:

c1 ¼ 38mJ m�2; c2 ¼ 61mJ m�2; c3 ¼ 62mJ m�2 :

It is then possible to calculate the total energy, which is
plotted Fig. 8

Fig. 16 Representation of [010] dislocations dissociation reaction

Fig. 17 Representation of the pair interaction coefficient between
partial dislocations as a function of the orientation of the line (Theta is
the angle between the line and the Burgers vector)
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