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Abstract

The chemical force acting on dislocations in a short-range-ordered concentrated
Ni-based alloy is investigated by post mortem and in-situ transmission electron
microscopy. For this purpose, the positions of the dislocations in a pile-up
are calculated, taking into account the stress relaxation at the free surfaces.
The calculation shows that the distribution of the first dislocations of the pile-
up is only slightly affected by the presence of the free surfaces, while the length of
the pile-up strongly depends on the thickness of the foil. Analysis of pile-ups in
two short-range-ordered Ni-based alloys shows that the chemical force resulting
from short-range order (SRO) is noticeable up to the sixth dislocation of the pile-
up. These results indicate the presence of very small short-range-ordered clusters,
rather than a homogeneously distributed SRO.

} 1. Introduction

In-situ and post mortem transmission electron microscopy (TEM) observations
have demonstrated that deformation may proceed by the motion of planar arrays
of dislocations, resulting in slip bands or pile-ups of dislocations (Clément 1984,
Olfe and Neuhäuser 1988, Gerold and Karnthaler 1989). This is the case when the
movement of dislocations in a given plane is enhanced by the movement in the same
plane of previous dislocations.

In the g phase of concentrated Ni-based alloys, it is now well established that this
behaviour is a consequence of the existence of short-range order (SRO) of ð1 1

2
0Þ

type (Clément et al. 1996, Pettinari et al. 2001, Prem et al. 2002). Indeed the glide of
a dislocation D0 on a given plane G of a short-range-ordered alloy destroys, at
least partially, the SRO, which needs an energy �0 per unit surface swept by the
dislocation and corresponds to a frictional force �0 per unit length opposing the
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motion of D0. If the SRO is completely destroyed in the area A swept by D0,
any dislocation gliding in A moves in a disordered solid solution and experiences
no SRO frictional stress, which makes its glide easier than anywhere else in the
crystal. A dislocation source activated in A generates dislocations which pile up
against the dislocation D0 until the force on it reaches �0. The deformation proceeds
therefore by the motion of pile-ups. In the case of the � phase of concentrated
Ni-based alloys, post mortem as well as in-situ TEM observations of the alloys reveal
further that the first two dislocations of the pile up are paired (Jouiad et al. 1999,
Pettinari 1999, Pettinari et al. 2001), which indicates that the frictional force �1
exerted on the second dislocation is smaller than �0 (see } 3).

Precise comparisons between the TEM observations and the estimated positions
of the dislocations resulting from calculating the elastic interaction between disloca-
tions in an infinite medium have been made (Jouiad et al. 1998, 1999, Pettinari 1999)
without taking into account the screening of the effect of elastic stresses of the
dislocations by the free surfaces of the thin foil. In what follows, we shall first analyse
the properties of pile-ups in short-range-ordered alloys (} 2), then evaluate the effect
of elastic screening by analysing in detail the properties of screw dislocations pile-ups
in thin foils (} 3) and finally (} 4) apply the results in the case of g-phase alloys with
nominal compositions (in at.%) 65.6Ni–26.21Cr–2.02Mo–1.98W–4.19Re and
65.88Ni–26.07Cr–2.03Mo–1.98W–4.04Ru, respectively, and denoted gMCRe and
gMCRu, presenting evidence of SRO (Pettinari-Sturmel et al. 2002, Prem et al. 2002).

} 2. General properties of pile-ups

2.1. General pile-up in disordered alloys
We analyse the equilibrium of an array of nþ 1 parallel dislocations of Burgers

vector b moving in the same plane under the effect of a homogeneous applied stress
��a (figure 1). Since all dislocations undergo the same applied stress ��a, the total
force Fp on the dislocation p is:

Fp ¼ �b�a þ Sp þ Rp, 04 p4 n: ð1Þ

Rp is the total elastic force exerted on the dislocation p by the other dislocations
and Sp the frictional force that each dislocation may experience owing to lattice
friction and/or local interaction with foreign atoms. If Fij is the elastic force exerted
by the dislocation i on the dislocation j,

Rp ¼
X
i 6¼p

Fip ð2Þ

and, since one has very generally that
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Figure 1. Schematic diagram of a general pile-up in a disordered alloy under the effect of
homogeneous applied stress ��a.



Fij þ Fji ¼ 0, ð3Þ

then, from equation (3),

Xp¼n

p¼0

Rp ¼ 0: ð4Þ

Whenever the frictional forces Sp are the same for all dislocations and oppose their
motion, we set

Sp ¼ b�f , �f > 0: ð5Þ

Then �a must be replaced by �a��f in equation (1). The total force acting on the
pile-up is obtained from equations (1), (4) and (5):

Xp¼n

p¼0

Fp ¼ � nþ 1ð Þb �a � �fð Þ: ð6Þ

It must be emphasized that equations (1)–(6) do not rely on any particular expression
of the elastic interaction between dislocations. They are valid in an infinite as well
as in a finite elastic medium.

2.2. Pile-ups in short-range-ordered alloys
One dislocation D0 gliding in a short-range-ordered alloy introduces some

disorder. The created planar defect was defined as a diffuse antiphase boundary
(DAPB) by Schwander et al. (1992). Whenever the order is completely destroyed
by the glide of a single dislocation, the energy necessary to create this defect is �0.
In this case, dislocations following D0 feel no frictional force resulting from the
destruction of order. As a consequence, plastic flow occurs as groups of piled-up
dislocations.

However, there is no reason to assume that local order is completely destroyed
by the glide of the first dislocation. The SRO should change after the passage of each
dislocation, and successive dislocations trail a different fault (figure 2). Assuming
that, after the passage of a sufficient number of dislocations p*, the local order is
not affected any longer by the passage of other dislocations, the frictional stress
(�p��p�l)/b resulting from the SRO becomes negligible for p>p* (since �p� �p�l)
and thus plastic flow will occur as groups of piled-up dislocations.

Equation (1) for the total force on the dislocations is now written:
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Figure 2. Schematic diagram of a pile-up in a short-range-ordered alloy under the effect of
homogeneous applied stress ��a.



F0 ¼ �b�a þ �0 þ S0 þ R0, ð7 aÞ

Fp ¼ �b�a þ �p � �p�l þ Sp þ Rp, 0 < p4 n: ð7 bÞ

Again we assume that the frictional forces Sp are the same for all dislocations and
that these oppose their motion:

Sp ¼ b�f , �f > 0: ð8Þ

The critical stress �eq necessary to propagate the pile-up is then obtained when the
pile-up is at equilibrium:

Fp ¼ 0, 04 p4 n, ð9Þ

which leads to the following relations:

�0 ¼ bð�eq � �f Þ � R0, ð10 aÞ

�p ¼ �p�1 þ bð�eq � �f Þ � Rp, 0 < p4 n, ð10 bÞ

or

�p ¼ ð pþ 1Þbð�eq � �f Þ �
Xp
i¼0

Ri, 0 < p4 n: ð10 cÞ

Using equation (4), the fault energy �n behind the pile-up is simply given by

�n ¼ nþ 1ð Þbð�eq � �f Þ, ð11Þ

where �n is the energy resulting from the complete (or best) destruction of the SRO.
This equation is independent of the expression for the force between dislocations. It
is thus also valid whatever the dislocations’ character, in an infinite medium as well
as in a thin film. From a general point of view, equation (11) indicates that the
pile-up behaves like a single dislocation with a Burgers vector (nþ 1)b with a fault
�n in its trail.

If we assume that the local order is completely destroyed after the passage of the
first dislocation, we find that

�0 ¼ nþ 1ð Þbð�eq � �f Þ: ð12Þ

This case is similar to that of a pile-up of elastically interacting dislocations against
an obstacle under the application of homogeneous applied stress, ��eq.

Valuable information on the effect of SRO on dislocation motion as well as on
the value of the DAPB energies can then be obtained, as a function of the applied
stress, either by measuring the positions of the dislocations in immobile pile-ups
or from the observation of the dynamic properties of metastable pile-ups. No
such measurements are available in bulk materials. Post mortem and in-situ TEM
observations have revealed the existence of dislocations pile-ups in short-range-
ordered alloys. However, in order to obtain quantitative information, one must
evaluate accurately the applied stress, and the stress between dislocations.

Direct measurement of the applied resolved shear stress in a thin film is not an
easy task. All that can be done is to make reasonable assumptions and to compare
them critically with the observed results. Numerical calculation of the structure of
a pile-up in a thin film is, in principle, possible in any case. However, more insight
is gained by a detailed analysis of simple situations and extending cautiously the
results to more realistic situations. More information should be obtained from the
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in-situ TEM observation of the behaviour of pile-ups in short-range-ordered alloys,
provided that the calculation of the elastic interaction between dislocations takes
into account the screening of the stress field of the dislocations by the free surface of
the thin foils.

} 3. Pile-up in thin foils

3.1. General formulation
We now consider a thin foil of thickness h, containing one pile-up made of

screw dislocations, either perpendicular to the surface (figure 3 (a)), referred to as
a perpendicular pile-up, or parallel (figure 3 (b)) to the surface, referred to as a
parallel pile-up. The dislocations are submitted to an applied stress ��a. The detailed
calculations are developed in appendix A, }}A1 and A2. The results can be
conveniently expressed in terms of the dimensionless variables ui and qp:

ui ¼
xi
h
, ð13Þ
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Figure 3. The two configurations in a thin foil under consideration: (a) ‘perpendicular’
pile-up; (b) ‘parallel’ pile-up at a distance a from the surface.



where xi defines the position of dislocation i;

q0 ¼
h

�b
�a � �f �

�0
b

� �
, ð14 aÞ

qp ¼
h

�b
�a � �f �

�p � �p�1

b

� �
, 04 p4 p�, ð14 bÞ

qp ¼
h

�b
�a � �fð Þ, p� 4 p4 n, ð14 cÞ

where h is the thickness of the thin foil. With this notation, the total elastic force
exerted on dislocation j by the other dislocations of the pile-up has the form

Fj ¼
�b2

h
fj � qj

� �
: ð15Þ

fj must be identified with Fj (equation (A 2)) for perpendicular pile-ups and with  j

(equation (A 7 a)) for parallel pile-ups. The conditions of equilibrium are then
given by equations (9).

The positions of the dislocations at equilibrium have been calculated numeri-
cally, assuming no SRO and no frictional forces, for parallel and perpendicular
pile-ups. In this case,

qj ¼ q ¼
h�a
�b

: ð16Þ

Dislocations were given arbitrary initial positions (multiples of 10 nm for example).
They were displaced over a distance proportional to the stress that they experience
and then iterated. Convergence towards the energy minimum of the total configura-
tion was checked, and the iteration was stopped when the maximum distance run by
the dislocations during a step is lower than 0.02b. The accuracy of the calculation
procedure has been checked in four different ways:

(i) Using the final configuration as the initial configuration and increasing
the precision of the iterations, we find a relative variation of the positions
of the order of 10�3.

(ii) Given n, the positions xi/h (or xi/h*) of the dislocations depend only on
q (or q*), for values of �a and h varying separately by an order of magnitude.

(iii) The calculated stress on the leading dislocation is (nþ 1) �a within a relative
error of about 10�3.

(iv) Applying the numerical procedure to the case of a pile-up in an infinite
medium gives the exact values, within about 10�3, calculated either by the
polynomial method (Eshelby et al. 1951), or by independent numerical
methods (Chou et al. 1960).

3.2. Perpendicular pile-up
For a perpendicular pile-up (figure 3 (a)), we found that the distance d between

the first two dislocations of the pile-up and its total length L are well represented
by the following formulae:

h

d
¼ anqþ bn, ð17Þ
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h

L
¼ cnqþ dn, 14 q4 10, ð18 aÞ

h

L
¼ gnq

1=2, 0:14 q4 1: ð18 bÞ

The values of the coefficients an, bn, cn, dn and gn are given in table 1 for perpendi-
cular pile-ups containing 6, 11 or 21 screw dislocations. Figure 4 represents the
results. Note that equations (17) and (18) may be used to evaluate the stress when
the total length of the pile-up is known.

3.3. Parallel pile-up
For a pile-up of screw dislocations in a plane parallel to the surface, the inter-

action forces depend on the position of the plane with respect to the surface. Let a be
the distance of the plane to the closest surface (figure 3 (b)). We show in appendix A,
}A2, that, owing to the image force, the force between two parallel screw disloca-
tions, in a plane P parallel to the surface of the foil and at a distance a from the
closest surface, is to a very good approximation that calculated for screw dislo-
cations at the centre of a foil of thickness 2a. Therefore, for a pile-up at a distance
a from the closest surface, we define

� ¼
a

h
, 04 �4 0:5, ð19 aÞ

h� ¼ 2a, ð19 bÞ

q� ¼
h��a
�b

: ð19 cÞ

Let L� and d� define the total length of the pile-up and the distance of a dislocation
to the head of the pile-up, respectively. From equations (A 8)–(A 11),

d� ¼ 2�d1=2 q�ð Þ, ð20 aÞ

L� ¼ 2�L1=2 q�ð Þ: ð20 bÞ

The properties of parallel pile-ups of screw dislocations are therefore easily deduced
from the properties of a pile-up at the centre of the foil as shown by equations (A 9)
and (A 10). The results are expressed by equations (19) and (20). The corresponding
values of the coefficients an, bn, cn, dn and gn are given in table 1 for a parallel pile-up
of 11 screw dislocations at the centre of the foil (�¼ 0.5).

3.4. Comparison with a pile-up in an infinite medium
Let d1 and L1 be the values of d and L for a pile-up of n dislocations submitted

to an applied stress ��a in an infinite medium. In this case, the force exerted by the
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Table 1. Coefficients an, bn, cn, dn and gn as functions of n.

n an bn cn dn gn

Perpendicular 6 21.3 2.2 0.95 0.75 1.65
Perpendicular 11 37.5 0.7 0.46 0.52 0.95
Perpendicular 21 74.6 2.7 0.25 0.35 0.6
Parallel 11 37.5 0.7 0.38 0.34 0.7
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Figure 4. (a) Variation in h/d with q for a pile-up of length L in a thin foil of thickness h; d is
the distance between the first two dislocations. The numbers refer to perpendicular
pile-ups of 6, 11 and 21 dislocations; p refers to a parallel pile-up with 11 dislocations.
(b) Variation in h/L with q, for 0.1 4 q 4 1. (c) Variation in h/L with q, for
1 4 q 4 10.



screw dislocation i on the parallel screw dislocation j is given by

Fij ¼
�b2

2p xj � xi
� � : ð21Þ

The equilibrium positions of the dislocations forming a pile up under stress are
given by the zeros of the derivative of the relevant Legendre polynomial (Eshelby
et al. 1951). No analytical expression exists for these zeros, but they are tabulated in
many textbooks (for example Abramowicz and Stegun (1970)). From the tabulated
value, one may write to a very good approximation

d1 � 0:3
�b

�a
, ð22 aÞ

L1 � kn
�b

�a
, ð22 bÞ

kn � 0:3n� 0:7: ð22 cÞ

Hence, comparison with a perpendicular pile-up in a thin foil gives

d1
d

� 0:3
anqþ bn

nq
, ð23Þ

L1

L
� kn

cnqþ dn
q

, 14 q4 10, ð24 aÞ

L1

L
�

kngn
q1=2

, 0:14 q4 10: ð24 bÞ

Let �f (n, �a, h) be the stress ahead of a pile-up in the thin foil, and �f1(n, �a) be the
stress ahead of a homologous pile-up in an infinite medium. Systematic numerical
calculation shows that, to a good approximation,

�f � �f1 exp �
3x

h

� �
: ð25Þ

Here x is the distance from the head of the pile-up. This result is found to be almost
independent of n, �a and h. It is a consequence of the exponential decay of the stress
of one dislocation in a thin foil with distance.

Pile-ups in thin foils 815

Table 2. Measured positions of the
dislocations within the pile-up of

figure 5 (�MCRe deformed at 25�C).

Dislocation
Measured

position (nm)

0 0
1 31
2 81
3 177
4 294
5 405
6 582
7 770
8 1161



For a perpendicular pile-up of n¼ 11 dislocations stopped at an obstacle we have,
using the data in table 1, for q¼ 0.2,

d1 � 1:1d, L1 � 5:5L, ð26Þ

and, for q¼ 2,

d1 � 1:03d, L1 � 1:9L: ð27Þ

The situation is similar for a parallel pile-up, as can be seen in figure 4.
In the general case, equations (23) and (25) lead to the following simple

conclusions.

(i) The structure of the head of the pile-up as well as the local stress on the first
dislocations of the pile-up are not significantly influenced by the thickness
of the foil.

(ii) On the contrary, the structure of the pile-up (particularly its length) is
strongly modified. The stress field ahead of a pile-up in a thin foil decays
very rapidly with increasing distance.

} 4. Analysis of the pile-ups observed in thin foils

Unfortunately, pile-ups of perfect screw dislocations parallel or perpendicular
to the foil described above are almost never observed. One rather observes pile-ups
inclined with respect to the surfaces, and with a mixed character, similar to that
shown in figure 5. Thus, a direct comparison with experiments could lead to faulty
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Figure 5. Example of a pile-up found during in-situ deformation of �MCRe at 25�C. The
dislocations are gliding in the (111) plane. Calculated positions of the dislocations
assuming the fault energies reported in figure 6 (b) are superimposed.



statements, but it will be shown that, in numerous cases, experimental results can be
retrieved by the numerical calculations. The reasons are the following.

(i) Perpendicular and parallel pile-ups give very similar results.
(ii) Equation (6) is obeyed in all cases.
(iii) The most important effect of the stress relaxation at the surface occurs

whatever the character and the inclination of the dislocations to the surface.
It is well captured by equations (A 4) and (A 7). We may therefore consider
that, as is the case in the bulk, these formulae give an acceptable description
of the situations, provided that we multiply the functions F and  by some
constant � varying with the character of the dislocations. This does not
affect the distribution of the dislocations in the pile-up, although it modifies,
by a factor �, the relation between the applied stress and the length of the
pile-up.

(iv) The effect of the relaxation is almost negligible at a distance from the head
of the pile-up and small compared with the thickness h, where the stress
concentration is the largest.

Figure 5 shows an in-situ observation of a pile-up representative of the general
situation. Since the dislocations are slightly curved, we have replaced each curved
dislocation by an averaged straight dislocation. Knowledge of the position of
each dislocation allows the calculation of the elastic interaction forces Rp on
each dislocation (figure 6 (a); see also the measured positions of the dislocations
in table 2).

Although the existence of a trailing force at the surface is obvious, the observed
identical curvatures of all dislocations are directly related to the friction due to
the disordered solid solution, which freezes the dislocations in their observed
configuration. Precise measurement of the curvature radius of the dislocations
shows that the average value of the frictional stress is of the order of 10MPas
(Pettinari-Sturmel et al. 2003). It can therefore be safely neglected in the following
discussion.

First of all, it is worth pointing out that the assumption that the order is
completely destroyed after the passage of only one or two dislocations is invalidated
here since it would impose that Rp is constant for p>2, which is not the case here
nor in previous observations of the same alloy (Pettinari 1999). It must also be
emphasized that numerical calculations show that equation (4) is very accurately
fulfilled in all cases that have been examined. This indicates that the measured
positions of the dislocations are known with good accuracy.

The value of the DAPB energies can then be determined numerically as long
as the applied stress �eq at equilibrium is known. This is achieved by using the
following assumption: during in-situ experiments, the applied stress on the pile-up
is the stress necessary to move the dislocations in the pile-up, and not the stress
necessary to create the pile-up. Thus �a must be significantly lower than the elastic
limit �E. Now let us consider the last dislocation of the pile-up, for which the
equilibrium condition is

Fn ¼ �b�eq þ �n � �n�1ð Þ þ Rn þ b�f ¼ 0: ð28Þ

As the last dislocation is observed as moving freely in its glide plane, we assume
that the order is completely destroyed or at least does not change any longer, that is
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�n¼ �n�1 (n>p*). Thus, at equilibrium,

b�eq ¼ Rn þ b�f : ð29Þ

Experimentally, it is systematically found that the elastic stress Rn on the last
dislocation n is small, of the order of or less than a few millijoules per square
metre. In consequence, we take at equilibrium for the last dislocation, and thus
for all the dislocations,

�eq � �f ¼ 0: ð30Þ
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Figure 6. Results of the elastic interaction calculations from the positions of the dislocations
in the pile-up in figure 5: (a) elastic interaction force Rp as a function of the rank p
of the dislocation in the pile-up; (b) energy �p of the defect between dislocations p and
pþ1 resulting from the SRO.



It is worthwhile at this point to discuss results obtained by post mortem obser-
vations. We consider a pile-up formed during deformation of the bulk. Then the
applied stress is released, the pile-up relaxes but the dislocations of the pile-ups are
locked by interaction with impurities, that is by the stress �f.

The positions xi of the dislocations in the bulk are given by

�p � �p�1

� �
þ RðbulkÞ

p
ðxðbulkÞ

i
Þ þ b�f ¼ 0, ð31Þ

where now R(bulk) is the interaction stress between infinite dislocations. It is easy to
show mathematically that the interaction stress between dislocations in the bulk is
larger than the interaction stress in a thin foil, as illustrated in figure 7.

If the situation were frozen during the thinning process, the measured positions
of the dislocations should agree with the solution of equation (31). However, we
consistently found that the measured positions of the dislocations in the pile-ups are
characteristic of interactions between dislocations in a thin foil, thus indicating
that the dislocations have relaxed after bulk deformation, leading to the idea that
the frictional stress has a small influence on the final equilibrium position.

Again, experimentally we systematically found for post mortem observations
that the elastic stress Rn on the last dislocation n is very small. Thus equation (30)
remains valid for post mortem observations as in this case for p>p*:

Rn þ b�f ¼ 0 and �a ¼ 0, ð32Þ

with Rn very small. Therefore the frictional stress �f is too small to be measured
accurately by this technique.

Equations (10) now simply become

�p ¼ �
Xp
i¼0

Ri, 04 p4 n: ð33Þ

From the values of the Rp the values of the various �p have then been estimated
and plotted in figure 6 (b) for the case of the pile-up depicted in figure 5. Here the
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Figure 7. Comparison of the interaction of two parallel dislocations (a) in a thick foil and (b)
in a thin foil. As a segment of dislocation interacts with more length of dislocation in
the thick foil than in a thin foil, the interaction between dislocations must be signifi-
cantly higher in the bulk than in a thin foil.



effect of the SRO on the motion of dislocations is found to become negligible
or small after the passage of about six or seven dislocations. As reported in this
figure, the DAPB energies are found to decrease with the passage of the dislocations
and to tend to a very small value, if not zero. This strongly suggests the existence of
microdomains, of size smaller than 1 nm (about 4b), where the occurrence of a Ni–Cr
pair is favoured in agrement with previous observations (Pettinari et al. 2001).

The residual stress acting on the first dislocation is found to be very high, of the
order of 110MPa for �-Re at 25�C, which corresponds to a fault energy acting
against the movement of the first dislocation of the order of 27mJm�2 and results
in a high stress concentration at the head of the pile-up.

Values of �0 and �0, for different temperatures for �MCRe and �MCRu are reported
in table 3. The decrease in �0 with increasing temperature predicted by Schönfeld et
al. (1988) and Schwander et al. (1992) is essentially confirmed. Consistently, in the
same alloys, �p decreases with increasing temperature (figure 8).

Finally we note a clear decrease in the �0–�1 value at 750�C, which is in agree-
ment with the vanishing of the pairing of the two first dislocations at the head of
the pile-up, as previously reported (Jouiad et al. 1999, Pettinari 1999).

} 5. Conclusions

(1) We have written the equations of equilibrium of a pile-up of dislocations in a
short-range-ordered alloy, under the effect of an applied stress, taking into
account both the frictional stress due to local interaction with foreign atoms
and the frictional stress resulting from SRO. We have taken into account
that the SRO may be modified in different ways by the successive dislocations
and shown that the analysis of the distribution of the dislocations in a pile-up
provides valuable information on the SRO and its destruction by dislocation
glide.

(2) However, such pile-ups can only be observed in thin films. Therefore we
have calculated the structure of a pile-up made of screw dislocations in a
thin film and shown that it has the following properties.

(i) The stress ahead of the pile-up decreases rapidly with increasing
distance.

(ii) The distribution of the first dislocations of the pile-up does not differ
very much from that in the bulk.

(iii) The same can be said of the stress on the first dislocation.
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Table 3. Values of �0 and of the frictional stress �0¼ �0/b acting on the first dislocation of a
pile-up in the two �-phase alloys as functions of temperature T.

T
(�C)

�0
(mJm�2)

�0
(MPa)

�MCRe 25 27.7 109.5
�MCRe 350 33.3 131.5
�MCRe 750 9.8 38.9
�MCRu 25 19 75.2
�MCRu 600 16.7 66.1
�MCRu 750 5.2 20.6



(iv) On the contrary, the length of the pile-up as well as the distribution of
the dislocations far from the head of the pile-up are strongly modified.

(v) These features may be safely assumed to be general. Analysis of distri-
bution of dislocations in both post mortem and in-situ deformed samples
confirm the necessity of taking the screening effect of the surfaces into
account.
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Figure 8. Evolution of the energy �p of the defect created by the successive passage of the
dislocations as a function of the deformation temperature (a) for �MCRe and (b) for
�MCRu. Note the clear decrease in the energy with increasing temperature, indicating
that the influence of the SRO vanishes with increasing temperature.



APPENDIX A

}A1. Perpendicular pile-up of screw dislocations in a thin foil
Let us consider a pile up of nþ 1 parallel identical screw dislocations perpendi-

cular to the surface of a foil of thickness h (figure 3 (a)), labelled 0, 1, . . . , n. Let
x0, x1, . . . , xn be their abscissae which are greater than 0. The dislocation 0 is blocked
at the origin O.

Using the variables ui defined by equation (13), the force exerted by the disloca-
tion i on the dislocation j can be written (Eshelby and Stroh 1951)

Fij ¼
�b2

h
Fij , ðA1 aÞ

Fij ¼
4

p2
sgn uj � ui

� � Xm¼1

m¼0

1

2mþ 1
K1 2mþ 1ð Þp uj � ui

�� ��� 	
, ðA1 bÞ

where K1 is the modified Bessel function of the first order. Let {u} be the set of the
variables uj, and define

Fj uf g ¼
X
i 6¼j

Fij : ðA2Þ

The force Fj per unit length exerted on the dislocation j by the dislocations of the
pile-up is

Rj ¼
�b2

h
Fj: ðA3Þ

Assuming all dislocations to be submitted to the same friction force �f, and using
equations (7) and (14), the total force Fj per unit length on the dislocation j is

Fj ¼
�b2

h
Fj � qj
� �

: ðA4Þ

At equilibrium all the Fj are zero:

Fj uf gð Þ ¼ qj, j ¼ 1, 2, . . . , nþ 1: ðA5Þ

}A2. Parallel pile-up of screw dislocations in a thin foil
We consider a pile-up of screw dislocations in a plane parallel to the surface, and

at a distance a from the closest surface (figure 3 (b)). Because of the image force,
the stress field of a screw dislocation is that of the dislocation array represented in
figure A 1.

The force Fij// exerted by the dislocation i on the dislocation j can be written

Fij== ¼
�b2

h
Cij, ðA6 aÞ

Cij ¼
1

4

1� cos ð2ðp �Þ½ � sin h p uj � ui
� �� 	

cos h p uj � ui
� �� 	

� 1� cos ð2p�Þ½ � cos h p uj � ui
� �� 	

þ cos ð2p�Þ
, ðA6 bÞ

where � ¼ a=h ð04�4 0:5Þ: Let

Cj �, uf gð Þ ¼
X
i 6¼j

Cij: ðA7 aÞ
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The force per unit length exerted by the dislocations of the pile-up on the
dislocation j is

Rj== ¼
�b2

h
Cj : ðA7 bÞ

The total force on the dislocation j is

Fj== ¼
�b2

h
Cj � qj
� �

: ðA7 cÞ

For a pile-up in the centre of the foil, �¼ 0.5, equation (A 6 b) can be written

Cij

1

2

� �
, n, uj � ui

� �
¼

1

2 sin h p uj � ui
� �� 	 : ðA8Þ

Numerical calculation shows that, for � 6¼ 0.5,

Cij �, n, uj � ui
� �

� C�
ij �, n, uj � ui
� �

¼
1

4� sin h p ðuj � uiÞ=2�
� 	

¼
1

2�
Cij

1

2
, n,

uj � ui

2�

� �
: ðA9Þ

Let

C�
j ¼

X
j 6¼i

C�
ij: ðA10Þ

Then

Rj== ¼
�b2

h�
C�

j , ðA11 aÞ

Fij== ¼
�b2

h�
C�

ij : ðA11 bÞ

The force between two parallel screw dislocations, in a plane P parallel to the surface
of the foil and at a distance a from the closest surface, is to a very good approxima-
tion that calculated for screw dislocations at the centre of a foil of thickness 2a.
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Figure A1. Schematic diagram of the stress field of a screw dislocation in a thin foil due
to the image force: (a) the dislocation S is at the centre of the foil, and full and
open circles represent virtual dislocations with Burgers vectors þb and �b respectively;
(b) screw dislocation at a distance a from the surface; (c) equivalent configuration of
scheme (b) (see text).
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